mercurial/bitmanipulation.h
author Pierre-Yves David <pierre-yves.david@octobus.net>
Fri, 05 Apr 2024 11:33:47 +0200
changeset 51580 b70628a9aa7e
parent 48274 d86908050375
permissions -rw-r--r--
phases: use revision number in new_heads All graph operations will be done using revision numbers, so passing nodes only means they will eventually get converted to revision numbers internally. As part of an effort to align the code on using revision number we make the `phases.newheads` function operated on revision number, taking them as input and using them in returns, instead of the node-id it used to consume and produce. This is part of multiple changesets effort to translate more part of the logic, but is done step by step to facilitate the identification of issue that might arise in mercurial core and extensions. To make the change simpler to handle for third party extensions, we also rename the function, using a more modern form. This will help detecting the different between the node-id version and the rev-num version. I also take this as an opportunity to add some comment about possible performance improvement for the future. They don't matter too much now, but they are worse exploring in a while.

#ifndef HG_BITMANIPULATION_H
#define HG_BITMANIPULATION_H

#include <string.h>

#include "compat.h"

/* Reads a 64 bit integer from big-endian bytes. Assumes that the data is long
 enough */
static inline uint64_t getbe64(const char *c)
{
	const unsigned char *d = (const unsigned char *)c;

	return ((((uint64_t)d[0]) << 56) | (((uint64_t)d[1]) << 48) |
	        (((uint64_t)d[2]) << 40) | (((uint64_t)d[3]) << 32) |
	        (((uint64_t)d[4]) << 24) | (((uint64_t)d[5]) << 16) |
	        (((uint64_t)d[6]) << 8) | (d[7]));
}

static inline uint32_t getbe32(const char *c)
{
	const unsigned char *d = (const unsigned char *)c;

	return ((((uint32_t)d[0]) << 24) | (((uint32_t)d[1]) << 16) |
	        (((uint32_t)d[2]) << 8) | (d[3]));
}

static inline int16_t getbeint16(const char *c)
{
	const unsigned char *d = (const unsigned char *)c;

	return ((d[0] << 8) | (d[1]));
}

static inline uint16_t getbeuint16(const char *c)
{
	const unsigned char *d = (const unsigned char *)c;

	return ((d[0] << 8) | (d[1]));
}

/* Writes a 64 bit integer to bytes in a big-endian format.
 Assumes that the buffer is long enough */
static inline void putbe64(uint64_t x, char *c)
{
	c[0] = (x >> 56) & 0xff;
	c[1] = (x >> 48) & 0xff;
	c[2] = (x >> 40) & 0xff;
	c[3] = (x >> 32) & 0xff;
	c[4] = (x >> 24) & 0xff;
	c[5] = (x >> 16) & 0xff;
	c[6] = (x >> 8) & 0xff;
	c[7] = (x)&0xff;
}

static inline void putbe32(uint32_t x, char *c)
{
	c[0] = (x >> 24) & 0xff;
	c[1] = (x >> 16) & 0xff;
	c[2] = (x >> 8) & 0xff;
	c[3] = (x)&0xff;
}

static inline double getbefloat64(const char *c)
{
	const unsigned char *d = (const unsigned char *)c;
	double ret;
	int i;
	uint64_t t = 0;
	for (i = 0; i < 8; i++) {
		t = (t << 8) + d[i];
	}
	memcpy(&ret, &t, sizeof(t));
	return ret;
}

#endif