tests/test-batching.py
author Gregory Szorc <gregory.szorc@gmail.com>
Wed, 28 Mar 2018 10:40:41 -0700
changeset 37295 45b39c69fae0
parent 33766 4c706037adef
child 37614 a81d02ea65db
permissions -rw-r--r--
wireproto: separate commands tables for version 1 and 2 commands We can't easily reuse existing command handlers for version 2 commands because the response types will be different. e.g. many commands return nodes encoded as hex. Our new wire protocol is binary safe, so we'll wish to encode nodes as binary. We /could/ teach each command handler to look at the protocol handler and change behavior based on the version in use. However, this would make logic a bit unwieldy over time and would make it harder to design a unified protocol handler interface. I think it's better to create a clean break between version 1 and version 2 of commands on the server. What I imagine happening is we will have separate @wireprotocommand functions for each protocol generation. Those functions will parse the request, dispatch to a common function to process it, then generate the response in its own, transport-specific manner. This commit establishes a separate table for tracking version 1 commands from version 2 commands. The HTTP server pieces have been updated to use this new table. Most commands are marked as both version 1 and version 2, so there is little practical impact to this change. A side-effect of this change is we now rely on transport registration in wireprototypes.TRANSPORTS and certain properties of the protocol interface. So a test had to be updated to conform. Differential Revision: https://phab.mercurial-scm.org/D2982

# test-batching.py - tests for transparent command batching
#
# Copyright 2011 Peter Arrenbrecht <peter@arrenbrecht.ch>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import, print_function

from mercurial import (
    error,
    peer,
    util,
    wireproto,
)

# equivalent of repo.repository
class thing(object):
    def hello(self):
        return "Ready."

# equivalent of localrepo.localrepository
class localthing(thing):
    def foo(self, one, two=None):
        if one:
            return "%s and %s" % (one, two,)
        return "Nope"
    def bar(self, b, a):
        return "%s und %s" % (b, a,)
    def greet(self, name=None):
        return "Hello, %s" % name
    def batchiter(self):
        '''Support for local batching.'''
        return peer.localiterbatcher(self)

# usage of "thing" interface
def use(it):

    # Direct call to base method shared between client and server.
    print(it.hello())

    # Direct calls to proxied methods. They cause individual roundtrips.
    print(it.foo("Un", two="Deux"))
    print(it.bar("Eins", "Zwei"))

    # Batched call to a couple of proxied methods.
    batch = it.batchiter()
    # The calls return futures to eventually hold results.
    foo = batch.foo(one="One", two="Two")
    bar = batch.bar("Eins", "Zwei")
    bar2 = batch.bar(b="Uno", a="Due")

    # Future shouldn't be set until we submit().
    assert isinstance(foo, peer.future)
    assert not util.safehasattr(foo, 'value')
    assert not util.safehasattr(bar, 'value')
    batch.submit()
    # Call results() to obtain results as a generator.
    results = batch.results()

    # Future results shouldn't be set until we consume a value.
    assert not util.safehasattr(foo, 'value')
    foovalue = next(results)
    assert util.safehasattr(foo, 'value')
    assert foovalue == foo.value
    print(foo.value)
    next(results)
    print(bar.value)
    next(results)
    print(bar2.value)

    # We should be at the end of the results generator.
    try:
        next(results)
    except StopIteration:
        print('proper end of results generator')
    else:
        print('extra emitted element!')

    # Attempting to call a non-batchable method inside a batch fails.
    batch = it.batchiter()
    try:
        batch.greet(name='John Smith')
    except error.ProgrammingError as e:
        print(e)

    # Attempting to call a local method inside a batch fails.
    batch = it.batchiter()
    try:
        batch.hello()
    except error.ProgrammingError as e:
        print(e)

# local usage
mylocal = localthing()
print()
print("== Local")
use(mylocal)

# demo remoting; mimicks what wireproto and HTTP/SSH do

# shared

def escapearg(plain):
    return (plain
            .replace(':', '::')
            .replace(',', ':,')
            .replace(';', ':;')
            .replace('=', ':='))
def unescapearg(escaped):
    return (escaped
            .replace(':=', '=')
            .replace(':;', ';')
            .replace(':,', ',')
            .replace('::', ':'))

# server side

# equivalent of wireproto's global functions
class server(object):
    def __init__(self, local):
        self.local = local
    def _call(self, name, args):
        args = dict(arg.split('=', 1) for arg in args)
        return getattr(self, name)(**args)
    def perform(self, req):
        print("REQ:", req)
        name, args = req.split('?', 1)
        args = args.split('&')
        vals = dict(arg.split('=', 1) for arg in args)
        res = getattr(self, name)(**vals)
        print("  ->", res)
        return res
    def batch(self, cmds):
        res = []
        for pair in cmds.split(';'):
            name, args = pair.split(':', 1)
            vals = {}
            for a in args.split(','):
                if a:
                    n, v = a.split('=')
                    vals[n] = unescapearg(v)
            res.append(escapearg(getattr(self, name)(**vals)))
        return ';'.join(res)
    def foo(self, one, two):
        return mangle(self.local.foo(unmangle(one), unmangle(two)))
    def bar(self, b, a):
        return mangle(self.local.bar(unmangle(b), unmangle(a)))
    def greet(self, name):
        return mangle(self.local.greet(unmangle(name)))
myserver = server(mylocal)

# local side

# equivalent of wireproto.encode/decodelist, that is, type-specific marshalling
# here we just transform the strings a bit to check we're properly en-/decoding
def mangle(s):
    return ''.join(chr(ord(c) + 1) for c in s)
def unmangle(s):
    return ''.join(chr(ord(c) - 1) for c in s)

# equivalent of wireproto.wirerepository and something like http's wire format
class remotething(thing):
    def __init__(self, server):
        self.server = server
    def _submitone(self, name, args):
        req = name + '?' + '&'.join(['%s=%s' % (n, v) for n, v in args])
        return self.server.perform(req)
    def _submitbatch(self, cmds):
        req = []
        for name, args in cmds:
            args = ','.join(n + '=' + escapearg(v) for n, v in args)
            req.append(name + ':' + args)
        req = ';'.join(req)
        res = self._submitone('batch', [('cmds', req,)])
        for r in res.split(';'):
            yield r

    def batchiter(self):
        return wireproto.remoteiterbatcher(self)

    @peer.batchable
    def foo(self, one, two=None):
        encargs = [('one', mangle(one),), ('two', mangle(two),)]
        encresref = peer.future()
        yield encargs, encresref
        yield unmangle(encresref.value)

    @peer.batchable
    def bar(self, b, a):
        encresref = peer.future()
        yield [('b', mangle(b),), ('a', mangle(a),)], encresref
        yield unmangle(encresref.value)

    # greet is coded directly. It therefore does not support batching. If it
    # does appear in a batch, the batch is split around greet, and the call to
    # greet is done in its own roundtrip.
    def greet(self, name=None):
        return unmangle(self._submitone('greet', [('name', mangle(name),)]))

# demo remote usage

myproxy = remotething(myserver)
print()
print("== Remote")
use(myproxy)