contrib/fuzz/FuzzedDataProvider.h
changeset 43813 5a9e2ae9899b
equal deleted inserted replaced
43812:bf0453866c80 43813:5a9e2ae9899b
       
     1 //===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
       
     2 //
       
     3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
       
     4 // See https://llvm.org/LICENSE.txt for license information.
       
     5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
       
     6 //
       
     7 //===----------------------------------------------------------------------===//
       
     8 // A single header library providing an utility class to break up an array of
       
     9 // bytes. Whenever run on the same input, provides the same output, as long as
       
    10 // its methods are called in the same order, with the same arguments.
       
    11 //===----------------------------------------------------------------------===//
       
    12 
       
    13 #ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
       
    14 #define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
       
    15 
       
    16 #include <algorithm>
       
    17 #include <climits>
       
    18 #include <cstddef>
       
    19 #include <cstdint>
       
    20 #include <cstring>
       
    21 #include <initializer_list>
       
    22 #include <string>
       
    23 #include <type_traits>
       
    24 #include <utility>
       
    25 #include <vector>
       
    26 
       
    27 // In addition to the comments below, the API is also briefly documented at
       
    28 // https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider
       
    29 class FuzzedDataProvider
       
    30 {
       
    31       public:
       
    32 	// |data| is an array of length |size| that the FuzzedDataProvider wraps
       
    33 	// to provide more granular access. |data| must outlive the
       
    34 	// FuzzedDataProvider.
       
    35 	FuzzedDataProvider(const uint8_t *data, size_t size)
       
    36 	    : data_ptr_(data), remaining_bytes_(size)
       
    37 	{
       
    38 	}
       
    39 	~FuzzedDataProvider() = default;
       
    40 
       
    41 	// Returns a std::vector containing |num_bytes| of input data. If fewer
       
    42 	// than |num_bytes| of data remain, returns a shorter std::vector
       
    43 	// containing all of the data that's left. Can be used with any byte
       
    44 	// sized type, such as char, unsigned char, uint8_t, etc.
       
    45 	template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes)
       
    46 	{
       
    47 		num_bytes = std::min(num_bytes, remaining_bytes_);
       
    48 		return ConsumeBytes<T>(num_bytes, num_bytes);
       
    49 	}
       
    50 
       
    51 	// Similar to |ConsumeBytes|, but also appends the terminator value at
       
    52 	// the end of the resulting vector. Useful, when a mutable
       
    53 	// null-terminated C-string is needed, for example. But that is a rare
       
    54 	// case. Better avoid it, if possible, and prefer using |ConsumeBytes|
       
    55 	// or |ConsumeBytesAsString| methods.
       
    56 	template <typename T>
       
    57 	std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes,
       
    58 	                                          T terminator = 0)
       
    59 	{
       
    60 		num_bytes = std::min(num_bytes, remaining_bytes_);
       
    61 		std::vector<T> result =
       
    62 		    ConsumeBytes<T>(num_bytes + 1, num_bytes);
       
    63 		result.back() = terminator;
       
    64 		return result;
       
    65 	}
       
    66 
       
    67 	// Returns a std::string containing |num_bytes| of input data. Using
       
    68 	// this and
       
    69 	// |.c_str()| on the resulting string is the best way to get an
       
    70 	// immutable null-terminated C string. If fewer than |num_bytes| of data
       
    71 	// remain, returns a shorter std::string containing all of the data
       
    72 	// that's left.
       
    73 	std::string ConsumeBytesAsString(size_t num_bytes)
       
    74 	{
       
    75 		static_assert(sizeof(std::string::value_type) ==
       
    76 		                  sizeof(uint8_t),
       
    77 		              "ConsumeBytesAsString cannot convert the data to "
       
    78 		              "a string.");
       
    79 
       
    80 		num_bytes = std::min(num_bytes, remaining_bytes_);
       
    81 		std::string result(
       
    82 		    reinterpret_cast<const std::string::value_type *>(
       
    83 		        data_ptr_),
       
    84 		    num_bytes);
       
    85 		Advance(num_bytes);
       
    86 		return result;
       
    87 	}
       
    88 
       
    89 	// Returns a number in the range [min, max] by consuming bytes from the
       
    90 	// input data. The value might not be uniformly distributed in the given
       
    91 	// range. If there's no input data left, always returns |min|. |min|
       
    92 	// must be less than or equal to |max|.
       
    93 	template <typename T> T ConsumeIntegralInRange(T min, T max)
       
    94 	{
       
    95 		static_assert(std::is_integral<T>::value,
       
    96 		              "An integral type is required.");
       
    97 		static_assert(sizeof(T) <= sizeof(uint64_t),
       
    98 		              "Unsupported integral type.");
       
    99 
       
   100 		if (min > max)
       
   101 			abort();
       
   102 
       
   103 		// Use the biggest type possible to hold the range and the
       
   104 		// result.
       
   105 		uint64_t range = static_cast<uint64_t>(max) - min;
       
   106 		uint64_t result = 0;
       
   107 		size_t offset = 0;
       
   108 
       
   109 		while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
       
   110 		       remaining_bytes_ != 0) {
       
   111 			// Pull bytes off the end of the seed data.
       
   112 			// Experimentally, this seems to allow the fuzzer to
       
   113 			// more easily explore the input space. This makes
       
   114 			// sense, since it works by modifying inputs that caused
       
   115 			// new code to run, and this data is often used to
       
   116 			// encode length of data read by |ConsumeBytes|.
       
   117 			// Separating out read lengths makes it easier modify
       
   118 			// the contents of the data that is actually read.
       
   119 			--remaining_bytes_;
       
   120 			result =
       
   121 			    (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
       
   122 			offset += CHAR_BIT;
       
   123 		}
       
   124 
       
   125 		// Avoid division by 0, in case |range + 1| results in overflow.
       
   126 		if (range != std::numeric_limits<decltype(range)>::max())
       
   127 			result = result % (range + 1);
       
   128 
       
   129 		return static_cast<T>(min + result);
       
   130 	}
       
   131 
       
   132 	// Returns a std::string of length from 0 to |max_length|. When it runs
       
   133 	// out of input data, returns what remains of the input. Designed to be
       
   134 	// more stable with respect to a fuzzer inserting characters than just
       
   135 	// picking a random length and then consuming that many bytes with
       
   136 	// |ConsumeBytes|.
       
   137 	std::string ConsumeRandomLengthString(size_t max_length)
       
   138 	{
       
   139 		// Reads bytes from the start of |data_ptr_|. Maps "\\" to "\",
       
   140 		// and maps "\" followed by anything else to the end of the
       
   141 		// string. As a result of this logic, a fuzzer can insert
       
   142 		// characters into the string, and the string will be lengthened
       
   143 		// to include those new characters, resulting in a more stable
       
   144 		// fuzzer than picking the length of a string independently from
       
   145 		// picking its contents.
       
   146 		std::string result;
       
   147 
       
   148 		// Reserve the anticipated capaticity to prevent several
       
   149 		// reallocations.
       
   150 		result.reserve(std::min(max_length, remaining_bytes_));
       
   151 		for (size_t i = 0; i < max_length && remaining_bytes_ != 0;
       
   152 		     ++i) {
       
   153 			char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
       
   154 			Advance(1);
       
   155 			if (next == '\\' && remaining_bytes_ != 0) {
       
   156 				next =
       
   157 				    ConvertUnsignedToSigned<char>(data_ptr_[0]);
       
   158 				Advance(1);
       
   159 				if (next != '\\')
       
   160 					break;
       
   161 			}
       
   162 			result += next;
       
   163 		}
       
   164 
       
   165 		result.shrink_to_fit();
       
   166 		return result;
       
   167 	}
       
   168 
       
   169 	// Returns a std::vector containing all remaining bytes of the input
       
   170 	// data.
       
   171 	template <typename T> std::vector<T> ConsumeRemainingBytes()
       
   172 	{
       
   173 		return ConsumeBytes<T>(remaining_bytes_);
       
   174 	}
       
   175 
       
   176 	// Returns a std::string containing all remaining bytes of the input
       
   177 	// data. Prefer using |ConsumeRemainingBytes| unless you actually need a
       
   178 	// std::string object.
       
   179 	std::string ConsumeRemainingBytesAsString()
       
   180 	{
       
   181 		return ConsumeBytesAsString(remaining_bytes_);
       
   182 	}
       
   183 
       
   184 	// Returns a number in the range [Type's min, Type's max]. The value
       
   185 	// might not be uniformly distributed in the given range. If there's no
       
   186 	// input data left, always returns |min|.
       
   187 	template <typename T> T ConsumeIntegral()
       
   188 	{
       
   189 		return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
       
   190 		                              std::numeric_limits<T>::max());
       
   191 	}
       
   192 
       
   193 	// Reads one byte and returns a bool, or false when no data remains.
       
   194 	bool ConsumeBool()
       
   195 	{
       
   196 		return 1 & ConsumeIntegral<uint8_t>();
       
   197 	}
       
   198 
       
   199 	// Returns a copy of the value selected from the given fixed-size
       
   200 	// |array|.
       
   201 	template <typename T, size_t size>
       
   202 	T PickValueInArray(const T (&array)[size])
       
   203 	{
       
   204 		static_assert(size > 0, "The array must be non empty.");
       
   205 		return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
       
   206 	}
       
   207 
       
   208 	template <typename T>
       
   209 	T PickValueInArray(std::initializer_list<const T> list)
       
   210 	{
       
   211 		// TODO(Dor1s): switch to static_assert once C++14 is allowed.
       
   212 		if (!list.size())
       
   213 			abort();
       
   214 
       
   215 		return *(list.begin() +
       
   216 		         ConsumeIntegralInRange<size_t>(0, list.size() - 1));
       
   217 	}
       
   218 
       
   219 	// Returns an enum value. The enum must start at 0 and be contiguous. It
       
   220 	// must also contain |kMaxValue| aliased to its largest (inclusive)
       
   221 	// value. Such as: enum class Foo { SomeValue, OtherValue, kMaxValue =
       
   222 	// OtherValue };
       
   223 	template <typename T> T ConsumeEnum()
       
   224 	{
       
   225 		static_assert(std::is_enum<T>::value,
       
   226 		              "|T| must be an enum type.");
       
   227 		return static_cast<T>(ConsumeIntegralInRange<uint32_t>(
       
   228 		    0, static_cast<uint32_t>(T::kMaxValue)));
       
   229 	}
       
   230 
       
   231 	// Returns a floating point number in the range [0.0, 1.0]. If there's
       
   232 	// no input data left, always returns 0.
       
   233 	template <typename T> T ConsumeProbability()
       
   234 	{
       
   235 		static_assert(std::is_floating_point<T>::value,
       
   236 		              "A floating point type is required.");
       
   237 
       
   238 		// Use different integral types for different floating point
       
   239 		// types in order to provide better density of the resulting
       
   240 		// values.
       
   241 		using IntegralType =
       
   242 		    typename std::conditional<(sizeof(T) <= sizeof(uint32_t)),
       
   243 		                              uint32_t, uint64_t>::type;
       
   244 
       
   245 		T result = static_cast<T>(ConsumeIntegral<IntegralType>());
       
   246 		result /=
       
   247 		    static_cast<T>(std::numeric_limits<IntegralType>::max());
       
   248 		return result;
       
   249 	}
       
   250 
       
   251 	// Returns a floating point value in the range [Type's lowest, Type's
       
   252 	// max] by consuming bytes from the input data. If there's no input data
       
   253 	// left, always returns approximately 0.
       
   254 	template <typename T> T ConsumeFloatingPoint()
       
   255 	{
       
   256 		return ConsumeFloatingPointInRange<T>(
       
   257 		    std::numeric_limits<T>::lowest(),
       
   258 		    std::numeric_limits<T>::max());
       
   259 	}
       
   260 
       
   261 	// Returns a floating point value in the given range by consuming bytes
       
   262 	// from the input data. If there's no input data left, returns |min|.
       
   263 	// Note that |min| must be less than or equal to |max|.
       
   264 	template <typename T> T ConsumeFloatingPointInRange(T min, T max)
       
   265 	{
       
   266 		if (min > max)
       
   267 			abort();
       
   268 
       
   269 		T range = .0;
       
   270 		T result = min;
       
   271 		constexpr T zero(.0);
       
   272 		if (max > zero && min < zero &&
       
   273 		    max > min + std::numeric_limits<T>::max()) {
       
   274 			// The diff |max - min| would overflow the given
       
   275 			// floating point type. Use the half of the diff as the
       
   276 			// range and consume a bool to decide whether the result
       
   277 			// is in the first of the second part of the diff.
       
   278 			range = (max / 2.0) - (min / 2.0);
       
   279 			if (ConsumeBool()) {
       
   280 				result += range;
       
   281 			}
       
   282 		} else {
       
   283 			range = max - min;
       
   284 		}
       
   285 
       
   286 		return result + range * ConsumeProbability<T>();
       
   287 	}
       
   288 
       
   289 	// Reports the remaining bytes available for fuzzed input.
       
   290 	size_t remaining_bytes()
       
   291 	{
       
   292 		return remaining_bytes_;
       
   293 	}
       
   294 
       
   295       private:
       
   296 	FuzzedDataProvider(const FuzzedDataProvider &) = delete;
       
   297 	FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
       
   298 
       
   299 	void Advance(size_t num_bytes)
       
   300 	{
       
   301 		if (num_bytes > remaining_bytes_)
       
   302 			abort();
       
   303 
       
   304 		data_ptr_ += num_bytes;
       
   305 		remaining_bytes_ -= num_bytes;
       
   306 	}
       
   307 
       
   308 	template <typename T>
       
   309 	std::vector<T> ConsumeBytes(size_t size, size_t num_bytes_to_consume)
       
   310 	{
       
   311 		static_assert(sizeof(T) == sizeof(uint8_t),
       
   312 		              "Incompatible data type.");
       
   313 
       
   314 		// The point of using the size-based constructor below is to
       
   315 		// increase the odds of having a vector object with capacity
       
   316 		// being equal to the length. That part is always implementation
       
   317 		// specific, but at least both libc++ and libstdc++ allocate the
       
   318 		// requested number of bytes in that constructor, which seems to
       
   319 		// be a natural choice for other implementations as well. To
       
   320 		// increase the odds even more, we also call |shrink_to_fit|
       
   321 		// below.
       
   322 		std::vector<T> result(size);
       
   323 		if (size == 0) {
       
   324 			if (num_bytes_to_consume != 0)
       
   325 				abort();
       
   326 			return result;
       
   327 		}
       
   328 
       
   329 		std::memcpy(result.data(), data_ptr_, num_bytes_to_consume);
       
   330 		Advance(num_bytes_to_consume);
       
   331 
       
   332 		// Even though |shrink_to_fit| is also implementation specific,
       
   333 		// we expect it to provide an additional assurance in case
       
   334 		// vector's constructor allocated a buffer which is larger than
       
   335 		// the actual amount of data we put inside it.
       
   336 		result.shrink_to_fit();
       
   337 		return result;
       
   338 	}
       
   339 
       
   340 	template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value)
       
   341 	{
       
   342 		static_assert(sizeof(TS) == sizeof(TU),
       
   343 		              "Incompatible data types.");
       
   344 		static_assert(!std::numeric_limits<TU>::is_signed,
       
   345 		              "Source type must be unsigned.");
       
   346 
       
   347 		// TODO(Dor1s): change to `if constexpr` once C++17 becomes
       
   348 		// mainstream.
       
   349 		if (std::numeric_limits<TS>::is_modulo)
       
   350 			return static_cast<TS>(value);
       
   351 
       
   352 		// Avoid using implementation-defined unsigned to signer
       
   353 		// conversions. To learn more, see
       
   354 		// https://stackoverflow.com/questions/13150449.
       
   355 		if (value <= std::numeric_limits<TS>::max()) {
       
   356 			return static_cast<TS>(value);
       
   357 		} else {
       
   358 			constexpr auto TS_min = std::numeric_limits<TS>::min();
       
   359 			return TS_min + static_cast<char>(value - TS_min);
       
   360 		}
       
   361 	}
       
   362 
       
   363 	const uint8_t *data_ptr_;
       
   364 	size_t remaining_bytes_;
       
   365 };
       
   366 
       
   367 #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
       
   368 // no-check-code since this is from a third party